Yearly overview

Subject: Year 8 Science

Term 1	Term 2	Term 3	Term 4	Term 5	Term 6
Prior knowledge:	Prior knowledge:	Prior knowledge:	Prior knowledge:	Prior knowledge:	Prior knowledge:
Cells: Identify the	Plant reproduction:	Human Reproduction:	Breathing:	Evolution:	
principal features of a	Use models to	Relate advice to	Investigate a claim	Review the evidence	
cheek cell and	evaluate the features	pregnant women to	linking height to lung	for theories about	
describe their	of various types of	ideas about transfer of	volume. In gas	how a particular	
functions.	seed dispersal	substances to the	exchange, oxygen and	species went extinct	
Multicellular	Plants have	embryo. The	carbon dioxide	Natural selection is a	
organisms are	adaptations to	menstrual cycle	move between alveoli	theory that explains	
composed of cells	disperse seeds using	prepares the female	and the blood. Oxygen	how species evolve	
which are organised	wind, water or	for pregnancy and	is transported to cells	and why extinction	
into tissues, organs	animals.	stops if the egg is	for aerobic respiration	occurs. Biodiversity is	
and systems to carry	Plants reproduce	fertilised by a sperm.	and carbon dioxide, a	vital to maintaining	
out life processes.	sexually to produce	The developing foetus	waste product of	populations. Within a	
There are many types	seeds, which are	relies on the mother	respiration, is	species variation helps	
of cell. Each has a	formed following	to provide it with	removed from the	against environment	
different structure or	fertilisation in the	oxygen and nutrients,	body. Breathing	changes, avoiding	
feature so it can do a	ovary.	to remove waste and	occurs through the	extinction. Within an	
specific job.	Facts:	protect it against	action of muscles	ecosystem, having	
Separating Mixtures:	Flowers contain the	harmful substances.	in the ribcage and	many different	
A pure substance	plant's reproductive	Facts:	diaphragm. The	species ensures	
consists of only one	organs. Pollen can be	The menstrual cycle	amount of oxygen	resources are	
type of element or	carried by the wind,	lasts approximately 28	required by body cells	available for other	
compound and has a	pollinating	days. If an egg is	determines the rate	populations, like	
fixed melting and	insects or other	fertilised it settles into	of breathing.	humans.	
boiling point. Mixtures	animals.	the uterus lining.	Periodic table:	Chemical Energy:	
may be separated due	Acids and Alkalis:	Universe:	Sort elements using	Investigate a	
to differences in their	Devise an enquiry to	Relate observations of	chemical data and	phenomenon that	
physical properties.	compare how well	changing day length to	relate this to their	relies on an	
The method chosen to	indigestion remedies	an appropriate model	position in the	exothermic or	
separate a mixture	work. The pH of a	of the solar system	periodic table	endothermic reaction.	
depends on which					

physical properties of	solution depends on	The solar system can	The elements in a	During a chemical	ľ
the individual	the strength of	be modelled as	group all react in a	reaction bonds are	
substances are	the acid: strong acids	planets rotating on	similar way and	broken (requiring	
different.	have lower pH values	tilted axes while	sometimes show a	energy) and new	l
Skill:	than weak acids.	orbiting the Sun,	pattern in reactivity.	bonds formed	l
Use techniques to	Mixing an acid and	moons orbiting	As you go down a	(releasing energy). If	
separate mixtures.	alkali produces a	planets and sunlight	group and across a	the energy released is	l
Fact	chemical reaction,	spreading out and	period the elements	greater than the	
Air, fruit juice, sea	neutralisation,	being reflected. This	show patterns in	energy required, the	
water and milk are	forming a chemical	explains day and year	physical properties.	reaction is	
mixtures.	called a salt and	length, seasons and	Facts:	exothermic. If the	
Liquids have different	water.	the visibility of objects	Metals are generally	reverse, it is	
boiling points.	Facts:	from Earth. Our solar	found on the left side	endothermic.	I
Gravity:	Acids have a pH below	system is a tiny part of	of the table, non-	Light:	
Explain the way in	7, neutral solutions	a galaxy, one of	metals on the right.	Use ray diagrams to	
which an astronaut's	have a pH of 7, alkalis	many billions in the	Group 1 contains	model how light	
weight varies on a	have a pH above 7.	Universe. Light takes	reactive metals called	passes through lenses	
journey to the moon	Acids and alkalis can	minutes to reach	alkali metals.	and transparent	
Mass and weight are	be corrosive or irritant	Earth from the Sun,	Group 7 contains non-	materials. When a	
different but related.	and require safe	four years from	metals called	light ray meets a	
Mass:	handling.	our nearest star and	halogens.	different medium,	
is a property of the	Hydrochloric, sulfuric	billions of years from	Group 0 contains	some of it is absorbed	
object; weight	and nitric acid are	other galaxies.	unreactive gases	and some reflected.	
depends upon	strong acids.	Energy transfer and	called noble gases.	For a mirror, the angle	
mass but also on	Acetic and citric acid	Contact forces:	Work:	of incidence equals	l
gravitational field	are weak acids.	Explain the energy	Explain how an	the angle of reflection.	
strength. Every object	Current:	transfers in a hand-	electric motor raising	The ray model can	
exerts a gravitational	Compare and explain	crank torch.	a weight is doing work	describe the	
force on every other	current flow in	Investigate factors	Work is done and	formation of an	l
object. The force	different parts of a	that affect the size of	energy transferred	image in a mirror and	
increases with mass	parallel circuit	frictional or drag	when a force moves	how objects appear	l
and decreases with	Current is a	forces. We can	an object. The bigger	different colours.	l
distance. Gravity holds	movement of	describe how jobs get	the force or distance,	When light enters a	
planets and moons in	electrons and is the	done using an energy	the greater the work.	denser medium it	ĺ
orbit around larger	same everywhere in a	model where energy is	Machines make work	bends towards the	
bodies.	series circuit. Current	transferred from		normal; when it enters	1

Skill: Use the formula: weight (N) = mass (kg) x gravitational field strength (N/kg). Fact: g on Earth = 10 N/kg.	divides between loops in a parallel circuit, combines when loops meet, lights up bulbs and makes components work. Around a charged object, the electric	one store at the start to another at the end. When energy is transferred, the total is conserved, but some energy is dissipated, reducing the useful energy.	easier by reducing the force needed. Levers and pulleys do this by increasing the distance moved, and wheels reduce friction.	a less dense medium it bends away from the normal. Refraction through lenses and prisms can be described using a ray diagram as a model. Skill:	
On the moon it is 1.6 N/kg.	field affects other charged objects, causing them to be attracted or repelled. The field strength decreases with distance. Fact: Two similarly charged objects repel, two differently charged objects attract.	When the resultant force on an object is zero, it is in equilibrium and does not move, or remains at constant speed in a straight line. One effect of a force is to change an object's form, causing it to be stretched or compressed. In some materials, the change is proportional to the force applied. Skill: Sketch the forces acting on an object, and label their size and direction.		Construct ray diagrams to show how light reflects off mirrors, forms images and refracts. Facts: Light travels at 300 million metres per second in a vacuum. Different colours of light have different frequencies.	
Term 1 knowledge	Term 2 knowledge	Term 3 knowledge	Term 4 knowledge	Term 5 knowledge	Term 6 knowledge
This term:	This term:	This term:	This term:	This term:	This term:
Breathing:	Respiration:	Evolution:	Digestion:	Inheritance:	
Investigate a claim	Use data from	Review the evidence	Evaluate how well a	Model the inheritance	
linking height to lung	investigating	for theories about	model represents key	of a specific trait and	
volume. In gas	fermentation with	how a particular	features of the	explore the variation	
		species went extinct	digestive system	in the offspring	

				-
exchange, oxygen and	yeast to explore	Natural selection is a	The body needs a	produced Inherited
carbon dioxide	respiration.	theory that explains	balanced diet with	characteristics are the
move between alveoli	Respiration is a series	how species evolve	carbohydrates, lipids,	result of genetic
and the blood. Oxygen	of chemical reactions,	and why extinction	proteins, vitamins,	information, in the
is transported to cells	in cells, that breaks	occurs. Biodiversity is	minerals, dietary fibre	form of sections of
for aerobic respiration	down glucose to	vital to maintaining	and water, for its cells'	DNA called genes,
and carbon dioxide, a	provide energy	populations. Within a	energy, growth and	being transferred from
waste product of	and form new	species variation helps	maintenance. Organs	parents to offspring
respiration, is	molecules. Most living	against environment	of the digestive	during reproduction.
removed from the	things use aerobic	changes, avoiding	system are adapted to	Chromosomes are
body. Breathing	respiration but switch	extinction. Within an	break large food	long pieces of DNA
occurs through the	to anaerobic	ecosystem, having	molecules into small	which contain many
action of muscles	respiration, which	many different	ones which can travel	genes. Gametes,
in the ribcage and	provides less energy,	species ensures	in the blood to cells	carrying half the
diaphragm. The	when oxygen is	resources are	and are used for life	total number of
amount of oxygen	unavailable.	available for other	processes.	chromosomes of each
required by body cells	Fact:	populations, like	Facts:	parent, combine
determines the rate	Yeast fermentation is	humans.	Iron is a mineral	during fertilisation.
of breathing.	used in brewing and	Climate and Earth's	important for red	Facts:
Periodic Table:	breadmaking.	Resources:	blood cells. Calcium is	The DNA of every
Sort elements using	Chemical Energy:	Investigate the	a mineral needed for	individual is different,
chemical data and	Investigate a	contribution that	strong teeth and	except for identical
relate this to their	phenomenon that	natural and human	bones. Vitamins and	twins. There is more
position in the	relies on an	chemical processes	minerals are needed	than one version of
periodic table	exothermic or	make to our carbon	in small amounts to	each gene e.g.
The elements in a	endothermic reaction	dioxide emissions.	keep the	different blood
group all react in a	During a chemical	Predict the method	body healthy.	groups.
similar way and	reaction bonds are	used for extracting	Elements:	Types of Reaction:
sometimes show a	broken (requiring	metal based on its	Compare the	Investigate changes in
pattern in reactivity.	energy) and new	position in the	properties of elements	mass for chemical and
As you go down a	bonds formed	reactivity series.	with the properties of	physical processes
group and across a	(releasing energy). If	Carbon is recycled	a compound formed	Combustion is a
period the elements	the energy released is	through natural	from them. Most	reaction with oxygen
show patterns in	greater than the	processes in the	substances are not	in which energy is
physical properties.	energy required, the	atmosphere,	pure elements, but	transferred to the
Facts:	reaction is	ecosystems, oceans		surroundings as heat

Metals are generally	exothermic. If the	and the Earth's crust	compounds or	and light. Thermal	
found on the left side	reverse, it is	(such as	mixtures containing	decomposition is a	
of the table, non-	endothermic.	photosynthesis and	atoms of different	reaction where	
metals on the right.	Magnetism and	respiration) as well as	elements. They have	a single reactant is	
Group 1 contains	Electromagnetism:	human activities	different properties	broken down into	
reactive metals called	Explore the magnetic	(burning fuels).	to the elements they	simpler products by	
alkali metals.	field pattern around	Greenhouse gases	contain.	heating. Chemical	
Group 7 contains non-	different types or	reduce the amount of	Skills:	changes can be	
metals called	combinations of	energy lost from the	Use particle diagrams	described by a model	
halogens.	magnets. Investigate	Earth through	to classify a substance	where atoms and	
Group 0 contains	ways of varying	radiation and	as an element,	molecules in reactants	
unreactive gases	strength of an	therefore, the	mixture or compound	rearrange to make the	
called noble gases.	electromagnet	temperature has been	and as molecules or	products and the total	
Contact Forces:	Magnetic materials,	rising as the	atoms. Name simple	number of atoms is	
Investigate factors	electromagnets and	concentration of those	compounds using	conserved.	
that affect the size of	the Earth create	gases has risen.	rules: change	Skill:	
frictional or drag	magnetic fields which	Scientists have	non-metal to –ide;	Write word equations	
forces. When the	can be described	evidence that global	mono, di, tri prefixes;	from information	
resultant force on an	by drawing field lines	warming caused by	and symbols of	about chemical	
object is zero, it is	to show the strength	human activity is	hydroxide, nitrate,	reactions.	
in equilibrium and	and direction. The	causing changes in	sulfate and carbonate.	Wave effects and	
does not move, or	stronger the magnet,	climate.	Fact:	Properties:	
remains at	and the smaller the	Facts:	The symbols of	Relate the impact of	
constant speed in a	distance from it, the	Methane and carbon	hydrogen, oxygen,	different types of	
straight line. One	greater the force	dioxide are	nitrogen, carbon,	waves on living cells to	
effect of a force is to	a magnetic object in	greenhouse	hydrogen, iron, zinc,	their frequency and	
change an object's	the field experiences.	gases. Earth's	copper, sulfur,	the energy carried by	
form, causing it to be	Facts:	atmosphere contains	aluminium, iodine,	the wave. Use the	
stretched or	Two 'like' magnetic	around 78% nitrogen,	bromine, chlorine,	wave model to explain	
compressed. In	poles repel and two	21% oxygen, <1 %	sodium, potassium	observations of the	
some materials, the	'unlike' magnetic	carbon dioxide, plus	and magnesium.	reflection, absorption	
change is proportional	poles attract.	small amounts of	Heating and Cooling:	and transmission	
to the force applied.	Field lines flow from	other gases.	Investigate how to	of waves. When a	
Skill:	the north-seeking pole	There is only a certain	prevent heat loss by	wave travels through	
Sketch the forces	to the south-seeking	quantity of any	conduction,	a substance, particles	
acting on an object,	pole. An	resource on Earth, so	convection and		

and label their size	electromagnet uses	the faster it is	radiation. The thermal	move to and fro.	
and direction.	the principle that a	extracted, the sooner	energy of an object	Energy is transferred	
	current through a wire	it will run out.	depends upon its	in the direction of	
	causes a magnetic	Recycling reduces the	mass, temperature	movement of the	
	field. Its strength	need to extract	and what it's made of.	wave. Waves	
	depends on the	resources.	When there is a	of higher amplitude or	
	current, the core and	Most metals are found	temperature	higher frequency	
	the number of coils in	combined with other	difference, energy	transfer more energy.	
	the solenoid.	elements. as a	transfers from the	A physical model of a	
	Fact:	compound, in ores.	hotter to the cooler	transverse wave	
	The magnetic field of	The more reactive a	obiect. Thermal	demonstrates it	
	an electromagnet	metal, the more	energy is transferred	moves from place to	
	decreases in strength	difficult it is to	through different	place, while the	
	with distance.	separate it from its	pathways, by particles	material it travels	
		compound. Carbon	in conduction and	through does not. and	
		displaces less	convection. and by	describes the	
		reactive metals. while	radiation.	properties of speed.	
		electrolysis is needed		wavelength and	
		for more reactive		reflection.	
		metals.			
		Work and Pressure:			
		Explain how an			
		electric motor raising			
		a weight is doing			
		work. Investigate how			
		pressure from your			
		foot onto the ground			
		varies with different			
		footwear. Work is			
		done and energy			
		transferred when a			
		force moves an object.			
		The bigger the force			
		or distance, the			
		greater the work.			
		Machines make			

		work option by			
		work easier by			
		reducing the force			
		needed. Levers			
		and pulleys do this by			
		increasing the			
		distance			
		moved, and wheels			
		reduce friction.			
		Pressure acts in a fluid			
		in all directions. It			
		increases with depth			
		due to the increased			
		weight of fluid, and			
		results in an upthrust.			
		Objects sink or float			
		depending on whether			
		the weight of the			
		object is bigger or			
		smaller than the			
		upthrust. Different			
		stresses on a solid			
		object can be used to			
		explain observations			
		where objects scratch,			
		sink into or break			
		surfaces.			
		Skill:			
		Use the formula: fluid			
		pressure, or stress on			
		a surface = force			
		(N)/area (m2).			
Future knowledge:	Future knowledge:	Future knowledge:	Future knowledge:	Future knowledge:	Future knowledge:
Digestion:	GCSE Biology	Inheritance:	GCSE Biology	GCSE Biology	
Evaluate how well a	Types of Reaction:	Model the inheritance	GCSE Chemistry	GCSE Chemistry	
model represents key	Investigate changes in	of a specific trait and	GCSE Physics	GCSE Physics	

features of the	mass for chemical and	explore the variation		
digestive system	physical processes	in the offspring		
The body needs a	Combustion is a	produced. Inherited		
balanced diet with	reaction with oxygen	characteristics are the		
carbohydrates, lipids,	in which energy is	result of genetic		
proteins, vitamins,	transferred to the	information, in the		
minerals, dietary fibre	surroundings as heat	form of sections of		
and water, for its cells'	and light. Thermal	DNA called genes,		
energy, growth and	decomposition is a	being transferred from		
maintenance. Organs	reaction where a	parents to offspring		
of the digestive	single reactant is	during reproduction.		
system are adapted to	broken down into	Chromosomes are		
break large food	simpler products by	long pieces of DNA		
molecules into small	heating. Chemical	which contain many		
ones which can travel	changes can be	genes. Gametes,		
in the blood to cells	described by a	carrying half the		
and are used for life	model where atoms	total number of		
processes.	and molecules in	chromosomes of each		
Facts:	reactants rearrange to	parent, combine		
Iron is a mineral	make the products	during fertilisation.		
important for red	and the total number	Facts:		
blood cells. Calcium is	of atoms is conserved.	The DNA of every		
a mineral needed for	Skill:	individual is different,		
strong teeth and	Write word equations	except for identical		
bones. Vitamins and	from information	twins. There is more		
minerals are needed	about chemical	than one version of		
in small amounts to	reactions. GCSE	each gene e.g.		
keep the body	Physics.	different blood		
healthy.		groups.		
Elements:		GCSE Chemistry		
Compare the		Heating and Cooling:		
properties of elements		Investigate how to		
with the properties of		prevent heat loss by		
a compound formed		conduction,		
from them. Most		convection and		
		radiation. The thermal		

· ·	- · · ·		
substances are not	energy of an object		
pure elements, but	depends upon its		
compounds or	mass, temperature		
mixtures containing	and what it's made of.		
atoms of different	When there is a		
elements. They have	temperature		
different properties	difference, energy		
to the elements they	transfers from the		
contain.	hotter to the cooler		
Skills:	object. Thermal		
Use particle diagrams	energy is transferred		
to classify a substance	through different		
as an element,	pathways, by particles		
mixture or compound	in conduction and		
and as molecules or	convection, and by		
atoms. Name simple	radiation.		
compounds using			
rules: change			
non-metal to –ide;			
mono, di, tri prefixes;			
and symbols of			
hydroxide, nitrate,			
sulfate and carbonate.			
Fact:			
The symbols of			
hydrogen, oxygen,			
nitrogen, carbon,			
hydrogen, iron, zinc,			
copper, sulfur,			
aluminium, iodine,			
bromine, chlorine,			
sodium, potassium			
and magnesium.			
Pressure:			
Investigate how			
pressure from your			

foot onto the ground			
varies with different			
footwear. Pressure			
acts in a fluid in all			
directions. It increases			
with depth due to the			
increased weight of			
fluid, and results in an			
upthrust. Objects sink			
or float depending on			
whether the weight of			
the object is bigger or			
smaller than the			
upthrust. Different			
stresses on a solid			
object can be used to			
explain observations			
where objects scratch,			
sink into or break			
surfaces.			
Skill:			
Use the formula: fluid			
pressure, or stress on			
a surface = force			
(N)/area (m2).			