Yearly overview

Science : Year 10 Science

Term 1	Term 2	Term 3	Term 4	Term 5	Term 6
Prior knowledge:	Prior knowledge:	Prior knowledge:	Prior knowledge:	Prior knowledge:	Prior knowledge:
Climate and Earth's	Wave effects and	Variation: Graph data	Metals and Non	Speed: Investigate	Climate and Earth's
Resources: Predict the	Properties: Relate the	relating to variation	metals: Use	variables that affect	Resources:
method used for	impact of different	and explain how it	experimental results	the speed of a toy car	Investigate the
extracting metal	types of waves on	may lead to the	to suggest an order of	rolling down a slope. If	contribution that
based on its position	living cells to their	survival of a species.	reactivity of various	the overall, resultant	natural and human
in the reactivity series.	frequency and the	There is variation	metals. Metals and	force on an object is	chemical processes
There is only a certain	energy carried by the	between individuals of	non-metals react with	non-zero, its motion	make to our carbon
quantity of any	wave. Use the wave	the same species.	oxygen to form oxides	changes and it slows	dioxide emissions.
resource on Earth, so	model to explain	Some variation is	which are either bases	down, speeds up or	Carbon is recycled
the faster it is	observations of the	inherited, some is	or acids. Metals can	changes direction.	through natural
extracted, the sooner	reflection, absorption	caused by the	be arranged as a	Contact Forces:	processes in the
it will run out.	and transmission of	environment and	reactivity series in	Investigate factors	atmosphere,
Recycling reduces the	waves. When a wave	some is a	order of how readily	that affect the size of	ecosystems, oceans
need to extract	travels through a	combination.	they react with other	frictional or drag	and the Earth's crust.
resources. Most	substance, particles	Variation between	substances. Some	forces. When the	Greenhouse gases
metals are found	move to and fro.	individuals is	metals react with	resultant force on an	reduce the amount of
combined with other	Energy is transferred	important for the	acids to produce salts	object is zero, it is in	energy lost from the
elements, as a	in the direction of	survival of a species,	and hydrogen.	equilibrium and does	Earth through
compound, in ores.	movement of the	helping it to avoid	Acids and Alkalis:	not move, or remains	radiation and
The more reactive a	wave. Waves of higher	extinction in an always	Devise an enquiry to	at constant speed in a	therefore the
metal, the more	amplitude or higher	changing	compare how well	straight line. One	temperature has been
difficult it is to	frequency transfer	environment.	indigestion remedies	effect of a force is to	rising as the
separate it from its	more energy. A	Plant and human	work. The pH of a	change an object's	concentration of those
compound. Carbon	physical model of a	reproduction: Use	solution depends on	form, causing it to be	gases has risen.
displaces less reactive	transverse wave	models to evaluate	the strength of the	stretched or	Scientists have
metals, while	demonstrates it	the features of various	acid: strong acids have	compressed. In some	evidence that global
electrolysis is needed	moves from place to	types of seed dispersal	lower pH values than	materials, the change	warming caused by
for more reactive	place, while the	Relate advice to	weak acids. Mixing an	is proportional to the	human activity is
metals.	material it travels	pregnant women to	acid and alkali	force applied.	causing changes in
	through does not. and	ideas about transfer of	produces a chemical		climate. There is only

Types of Reaction:	describes the	substances to the	reaction,	Separating mixtures:	a certain quantity of
Investigate changes in	properties of speed,	embryo. Plants have	neutralisation,	Devise ways to	any resource on Earth,
mass for chemical and	wavelength and	adaptations to	forming a chemical	separate mixtures,	so the faster it is
physical processes	reflection.	disperse seeds using	called a salt and	based on their	extracted, the sooner
Combustion is a	Breathing: Investigate	wind, water or	water.	properties. A pure	it will run out.
reaction with oxygen	a claim linking height	animals. Plants	Types of Reaction:	substance consists of	Recycling reduces the
in which energy is	to lung volume. In gas	reproduce sexually to	Investigate changes in	only one type of	need to extract
transferred to the	exchange, oxygen and	produce seeds, which	mass for chemical and	element or compound	resources. Most
surroundings as heat	carbon dioxide move	are formed following	physical processes	and has a fixed	metals are found
and light. Thermal	between alveoli and	fertilisation in the	Combustion is a	melting and boiling	combined with other
decomposition is a	the blood. Oxygen is	ovary.	reaction with oxygen	point. Mixtures may	elements, as a
reaction where a	transported to cells	Evolution: Review the	in which energy is	be separated due to	compound, in ores.
single reactant is	for aerobic respiration	evidence for theories	transferred to the	differences in their	The more reactive a
broken down into	and carbon dioxide, a	about how a particular	surroundings as heat	physical properties.	metal, the more
simpler products by	waste product of	species went extinct	and light. Thermal	The method chosen to	difficult it is to
heating. Chemical	respiration, is	Natural selection is a	decomposition is a	separate a mixture	separate it from its
changes can be	removed from the	theory that explains	reaction where a	depends on which	compound. Carbon
described by a model	body. Breathing	how species evolve	single reactant is	physical properties of	displaces less reactive
where atoms and	occurs through the	and why extinction	broken down into	the individual	metals, while
molecules in reactants	action of muscles in	occurs. Biodiversity is	simpler products by	substances are	electrolysis is needed
rearrange to make the	the ribcage and	vital to maintaining	heating. Chemical	different.	for more reactive
products and the total	diaphragm. The	populations. Within a	changes can be		metals.
number of atoms is	amount of oxygen	species variation helps	described by a model		Interdependence:
conserved.	required by body cells	against environment	where atoms and		Use a model to
Particle Model:	determines the rate of	changes, avoiding	molecules in reactants		investigate the impact
Relate the features of	breathing.	extinction. Within an	rearrange to make the		of changes in a
the particle model to	Digestion: Evaluate	ecosystem, having	products and the total		population of one
the properties of	how well a model	many different species	number of atoms is		organism on others in
materials in different	represents key	ensures resources are	conserved.		the ecosystem
states. Properties of	features of the	available for other			Organisms in a food
solids, liquids and	digestive system	populations, like			web (decomposers,
gases can be	The body needs a	humans.			producers and
described in terms of	balanced diet with	Inheritance: Model			consumers) depend
particles in motion but	carbohydrates, lipids,	the inheritance of a			on each other for
with differences in the	proteins, vitamins,	specific trait and			nutrients. So, a change
arrangement and	minerals. dietary fibre	explore the variation			in one population

	1		1	r	
movement of these	and water, for its cells'	in the offspring			leads to changes in
same particles: closely	energy, growth and	produced. Inherited			others. The population
spaced and vibrating	maintenance. Organs	characteristics are the			of a species is affected
(solid), in random	of the digestive	result of genetic			by the number of its
motion but in contact	system are adapted to	information, in the			predators and prey,
(liquid), or in random	break large food	form of sections of			disease, pollution and
motion and widely	molecules into small	DNA called genes,			competition between
spaced (gas).	ones which can travel	being transferred from			individuals for limited
Observations where	in the blood to cells	parents to offspring			resources such as
substances change	and are used for life	during reproduction.			water and nutrients.
temperature or state	processes.	Chromosomes are			
can be described in		long pieces of DNA			
terms of particles		which contain many			
gaining or losing		genes. Gametes,			
energy.		carrying half the total			
		number of			
		chromosomes of each			
		parent, combine			
		during fertilisation.			
		Chemical Energy:			
		Investigate a			
		phenomenon that			
		relies on an			
		exothermic or			
		endothermic reaction.			
		During a chemical			
		reaction bonds are			
		broken (requiring			
		energy) and new			
		bonds formed			
		(releasing energy). If			
		the energy released is			
		greater than the			
		energy required, the			
		reaction is			
		exothermic. If the			

		reverse, it is endothermic.			
Term 1 knowledge	Term 2 knowledge	Term 3 knowledge	Term 4 knowledge	Term 5 knowledge	Term 6 knowledge
This term:	This term:	This term:	This term:	This term:	This term:
Chemical changes	Atomic structure.	Inheritance, variation	The rate and extent of	Forces. Engineers	Ecology. The sun is a
Understanding of	Ionising radiation is	and evolution. In this	chemical change.	analyse forces when	source of energy that
chemical changes	hazardous but can be	section we will	Chemical reactions	designing a great	passes through
began when people	very useful. Although	discover how the	can occur at vastly	variety of machines	ecosystems. Materials
began experimenting	radioactivity was	number of	different rates. Whilst	and instruments, from	including carbon and
with chemical	discovered over a	chromosomes are	the reactivity of	road bridges and	water are continually
reactions in a	century ago, it took	halved during meiosis	chemicals is a	fairground rides to	recycled by the living
systematic way and	many nuclear	and then combined	significant factor in	atomic force	world, being released
organising their	physicists several	with new genes from	how fast chemical	microscopes. Anything	through respiration of
results logically.	decades to	the sexual partner to	reactions proceed,	mechanical can be	animals, plants and
Knowing about these	understand the	produce unique	there are many	analysed in this way.	decomposing
different chemical	structure of atoms,	offspring. Gene	variables that can be	Recent developments	microorganisms and
changes meant that	nuclear forces and	mutations occur	manipulated in order	in artificial limbs use	taken up by plants in
scientists could begin	stability. Early	continuously and on	to speed them up or	the analysis of forces	photosynthesis. All
to predict exactly	researchers suffered	rare occasions can	slow them down.	to make movement	species live in
what new substances	from their exposure to	affect the functioning	Chemical reactions	possible.	ecosystems composed
would be formed and	ionising radiation.	of the animal or plant.	may also be reversible	Chemical analysis	of complex
use this knowledge to	Rules for radiological	These mutations may	and therefore the	Analysts have	communities of
develop a wide range	protection were first	be damaging and lead	effect of different	developed a range of	animals and plants
of different materials	introduced in the	to a number of genetic	variables needs to be	qualitative tests to	dependent on each
and processes. It also	1930s and	disorders or death.	established in order to	detect specific	other and that are
helped biochemists to	subsequently	Very rarely a new	identify how to	chemicals. The tests	adapted to particular
understand the	improved. Today	mutation can be	maximise the yield of	are based on reactions	conditions, both
complex reactions	radioactive materials	beneficial and	desired product.	that produce a gas	abiotic and biotic.
that take place in	are widely used in	consequently, lead to	Understanding energy	with distinctive	These ecosystems
living organisms.	medicine, industry,	increased fitness in	changes that	properties, or a colour	provide essential
The extraction of	agriculture and	the individual.	accompany chemical	change or an insoluble	services that support
important resources	electrical power	Variation generated	reactions is important	solid that appears as a	human life and
from the earth makes	generation.	by mutations and	for this process. In	precipitate.	continued
use of the way that	Homeostasis and	sexual reproduction is	industry, chemists and	Instrumental methods	development. In order
some elements and	response. Cells in the	the basis for natural	chemical engineers	provide fast, sensitive	to continue to benefit

compounds react with	body can only survive	selection; this is how	determine the effect	and accurate means of	from these services
each other and how	within narrow physical	species evolve. An	of different variables	analysing chemicals,	humans need to
easily they can be	and chemical limits.	understanding of	on reaction rate and	and are particularly	engage with the
'pulled apart'.	They require a	these processes has	yield of product.	useful when the	environment in a
Particle model of	constant temperature	allowed scientists to	Whilst there may be	amount of chemical	sustainable way. In
matter. The particle	and pH as well as a	intervene through	compromises to be	being analysed is	this section we will
model is widely used	constant supply of	selective breeding to	made, they carry out	small. Forensic	explore how humans
to predict the	dissolved food and	produce livestock with	optimisation	scientists and drug	are threatening
behaviour of solids,	water. In order to do	favoured	processes to ensure	control scientists rely	biodiversity as well as
liquids and gases and	this the body requires	characteristics. Once	that enough product is	on such instrumental	the natural systems
this has many	control systems that	new varieties of plants	produced within a	methods in their work.	that support it. We
applications in	constantly monitor	or animals have been	sufficient time, and in		will also consider
everyday life. It helps	and adjust the	produced it is possible	an energy-efficient		some actions we need
us to explain a wide	composition of the	to clone individuals to	way.		to take to ensure our
range of observations	blood and tissues.	produce larger	Organic chemistry The		future health,
and engineers use	These control systems	numbers of identical	chemistry of carbon		prosperity and well-
these principles when	include receptors	individuals all carrying	compounds is so		being.
designing vessels to	which sense changes	the favourable	important that it		Chemistry of the
withstand high	and effectors that	characteristic.	forms a separate		atmosphere. The
pressures and	bring about changes.	Scientists have now	branch of chemistry. A		Earth's atmosphere is
temperatures, such as	In this section we will	discovered how to	great variety of carbon		dynamic and forever
submarines and	explore the structure	take genes from one	compounds is possible		changing. The causes
spacecraft. It also	and function of the	species and introduce	because carbon atoms		of these changes are
explains why it is	nervous system and	them in to the	can form chains and		sometimes man-made
difficult to make a	how it can bring about	genome of another by	rings linked by C-C		and sometimes part of
good cup of tea high	fast responses. We	a process called	bonds. This branch of		many natural cycles.
up a mountain!	will also explore the	genetic engineering. In	chemistry gets its		Scientists use very
	hormonal system	spite of the huge	name from the fact		complex software to
	which usually brings	potential benefits that	that the main sources		predict weather and
	about much slower	this technology can	of organic compounds		climate change as
	changes. Hormonal	offer, genetic	are living, or once-		there are many
	coordination is	modification still	living materials from		variables that can
	particularly important	remains highly	plants and animals.		influence this. The
	in reproduction since	controversial.	These sources include		problems caused by
	it controls the	Energy changes.	fossil fuels which are a		increased levels of air
	menstrual cycle. An	Energy changes are an	major source of		pollutants require

understanding of the	important part of	feedstock for the	scientists and
role of hormones in	chemical reactions.	petrochemical	engineers to develop
reproduction has	The interaction of	industry. Chemists are	solutions that help to
allowed scientists to	particles often	able to take organic	reduce the impact of
develop not only	involves transfers of	molecules and modify	human activity.
contraceptive drugs	energy due to the	them in many ways to	
but also drugs which	breaking and	make new and useful	
can increase fertility.	formation of bonds.	materials such as	
	Reactions in which	polymers,	
	energy is released to	pharmaceuticals,	
	the surroundings are	perfumes and	
	exothermic reactions,	flavourings, dyes and	
	while those that take	detergents.	
	in thermal energy are		
	endothermic. These		
	interactions between		
	particles can produce		
	heating or cooling		
	effects that are used		
	in a range of everyday		
	applications. Some		
	interactions between		
	ions in an electrolyte		
	result in the		
	production of		
	electricity. Cells and		
	batteries use these		
	chemical reactions to		
	provide electricity.		
	Electricity can also be		
	used to decompose		
	ionic substances and is		
	a useful means of		
	producing elements		
	that are too expensive		

		to extract any other			
		way.			
Future knowledge:	Future knowledge:	Future knowledge:	Future knowledge:	Future knowledge:	Future knowledge:
Energy changes.	Forces. Engineers	Ecology. The Sun is a	Chemical analysis.	Waves. Wave	Key ideas. The
Energy changes are an	analyse forces when	source of energy that	Analysts have	behaviour is common	complex and diverse
important part of	designing a great	passes through	developed a range of	in both natural and	phenomena of the
chemical reactions.	variety of machines	ecosystems. Materials	qualitative tests to	man-made systems.	natural world can be
The interaction of	and instruments, from	including carbon and	detect specific	Waves carry energy	described in terms of
particles often	road bridges and	water are continually	chemicals. The tests	from one place to	a small number of key
involves transfers of	fairground rides to	recycled by the living	are based on reactions	another and can also	ideas in biology.
energy due to the	atomic force	world, being released	that produce a gas	carry information.	These key ideas are of
breaking and	microscopes. Anything	through respiration of	with distinctive	Designing comfortable	universal application,
formation of bonds.	mechanical can be	animals, plants and	properties, or a colour	and safe structures	and we have
Reactions in which	analysed in this way.	decomposing	change or an insoluble	such as bridges,	embedded them
energy is released to	Recent developments	microorganisms and	solid that appears as a	houses and music	throughout the
the surroundings are	in artificial limbs use	taken up by plants in	precipitate.	performance halls	subject content. They
exothermic reactions,	the analysis of forces	photosynthesis. All	Instrumental methods	requires an	underpin many
while those that take	to make movement	species live in	provide fast, sensitive	understanding of	aspects of the science
in thermal energy are	possible.	ecosystems composed	and accurate means of	mechanical waves.	assessment.
endothermic. These	Inheritance, variation	of complex	analysing chemicals,	Modern technologies	Key ideas in biology:
interactions between	and evolution. In this	communities of	and are particularly	such as imaging and	 life processes
particles can produce	section we will	animals and plants	useful when the	communication	depend on molecules
heating or cooling	discover how the	dependent on each	amount of chemical	systems show how we	whose structure is
effects that are used	number of	other and that are	being analysed is	can make the most of	related to their
in a range of everyday	chromosomes are	adapted to particular	small. Forensic	electromagnetic	function.
applications. Some	halved during meiosis	conditions, both	scientists and drug	waves.	 the fundamental
interactions between	and then combined	abiotic and biotic.	control scientists rely		units of living
ions in an electrolyte	with new genes from	These ecosystems	on such instrumental	Chemistry of the	organisms are cells,
result in the	the sexual partner to	provide essential	methods in their work.	atmosphere. The	which may be part of
production of	produce unique	services that support		Earth's atmosphere is	highly adapted
electricity. Cells and	offspring. Gene	human life and		dynamic and forever	structures including
batteries use these	mutations occur	continued		changing. The causes	tissues, organs and
chemical reactions to	continuously and on	development. In order		of these changes are	organ systems,
provide electricity.	rare occasions can	to continue to benefit		sometimes man-made	enabling living
Electricity can also be	affect the functioning	from these services		and sometimes part of	

used to decompose	of the animal or plant.	humans need to	many natural cycles.	processes to be	
ionic substances and is	These mutations may	engage with the	Scientists use very	performed effectively.	
a useful means of	be damaging and lead	environment in a	complex software to	 living organisms may 	
producing elements	to a number of genetic	sustainable way. In	predict weather and	form populations of	
that are too expensive	disorders or death.	this section we will	climate change as	single species,	
to extract any other	Very rarely a new	explore how humans	there are many	communities of many	
way.	mutation can be	are threatening	variables that can	species and	
Atomic structure	beneficial and	biodiversity as well as	influence this.	ecosystems,	
Ionising radiation is	consequently, lead to	the natural systems	The problems caused	interacting with each	
hazardous but can be	increased fitness in	that support it. We	by increased levels of	other, with the	
very useful. Although	the individual.	will also consider	air pollutants require	environment and with	
radioactivity was	Variation generated	some actions we need	scientists and	humans in many	
discovered over a	by mutations and	to take to ensure our	engineers to develop	different ways.	
century ago, it took	sexual reproduction is	future health,	solutions that help to	 living organisms are 	
many nuclear	the basis for natural	prosperity and well-	reduce the impact of	interdependent and	
physicists several	selection; this is how	being.	human activity.	show adaptations to	
decades to	species evolve. An	The rate and extent of		their environment.	
understand the	understanding of	chemical change		 life on Earth is 	
structure of atoms,	these processes has	Chemical reactions		dependent on	
nuclear forces and	allowed scientists to	can occur at vastly		photosynthesis in	
stability. Early	intervene through	different rates. Whilst		which green plants	
researchers suffered	selective breeding to	the reactivity of		and algae trap light	
from their exposure to	produce livestock with	chemicals is a		from the Sun to fix	
ionising radiation.	favoured	significant factor in		carbon dioxide and	
Rules for radiological	characteristics. Once	how fast chemical		combine it with	
protection were first	new varieties of plants	reactions proceed,		hydrogen from water	
introduced in the	or animals have been	there are many		to make organic	
1930s and	produced it is possible	variables that can be		compounds and	
subsequently	to clone individuals to	manipulated in order		oxygen.	
improved. Today	produce larger	to speed them up or		 organic compounds 	
radioactive materials	numbers of identical	slow them down.		are used as fuels in	
are widely used in	individuals all carrying	Chemical reactions		cellular respiration to	
medicine, industry,	the favourable	may also be reversible		allow the other	
agriculture and	characteristic.	and therefore the		chemical reactions	
electrical power	Scientists have now	effect of different		necessary for life.	
generation.	discovered how to	variables needs to be			

take genes from one	established in order to		 the chemicals in
species and introduce	identify how to		ecosystems are
them in to the	maximise the yield of		continually cycling
genome of another by	desired product.		through the natural
a process called	Understanding energy		world.
genetic engineering. In	changes that		 the characteristics of
spite of the huge	accompany chemical		a living organism are
potential benefits that	reactions is important		influenced by its
this technology can	for this process. In		genome and its
offer, genetic	industry, chemists and		interaction with the
modification still	chemical engineers		environment.
remains highly	determine the effect		 evolution occurs by
controversial.	of different variables		a process of natural
	on reaction rate and		selection and accounts
	yield of product.		both for biodiversity
	Whilst there may be		and how organisms
	compromises to be		are all related to
	made, they carry out		varying degrees.
	optimisation		Using resources
	processes to ensure		Industries use the
	that enough product is		Earth's natural
	produced within a		resources to
	sufficient time, and in		manufacture useful
	an energy-efficient		products. In order to
	way.		operate sustainably,
			chemists seek to
			minimise the use of
			limited resources, use
			of energy, waste and
			environmental impact
			in the manufacture of
			these products.
			Chemists also aim to
			develop ways of
			disposing of products
			at the end of their

		useful life in ways that
		ensure that materials
		and stored energy are
		utilised. Pollution,
		disposal of waste
		products and changing
		land use has a
		significant effect on
		the environment, and
		environmental
		chemists study how
		, human activity has
		affected the Earth's
		natural cycles. and
		how damaging effects
		can be minimised.